MATRIX CHAIN MULTIPLICATION

- Matrix chain multiplication is an optimization problem that can be solved using dynamic programming.
- Given a sequence of matrices, the goal is to find the most efficient way to multiply these matrices. It will merely decide the sequence of the matrix multiplications involved.
- There are many options to multiply a chain of matrices because matrix multiplication is associative. For example, if we had four matrices A, B, C, and D, can be done as
$(A B C) D=(A B)(C D)=A(B C D) \ldots .$.
- Our aim is to find the order in which the matrices have to be parenthesized such that it requires minimum number of simple arithmetic operations to compute the product.
- For example if A is a 10×30 matrix, B is a 30×5 matrix, and C is a 5×60 matrix. Then,

$$
\begin{aligned}
& (A B) C=(10 * 30 * 5)+(10 * 5 * 60)=1500+3000=4500 \text { operations } \\
& A(B C)=(30 * 5 * 60)+(10 * 30 * 60)=9000+18000=27000 \text { operations }
\end{aligned}
$$

the first one requires less number of operations

Example:

The matrices have size $4 \times 2,2 \times 3,3 \times 1,1 \times 5$. Find the order in which the matrices have to be parenthesized such that it requires minimum number of simple arithmetic operations to compute the product.

Solution:

	1	2	3	4
1	0			
2		0		
3			0	
4				0

There are 4 matrices. So we have to take 4 X 4 table. Here

$$
\begin{aligned}
& \mathrm{p}_{0}=4\left\{\text { No. of rows of } 1^{\text {st }} \text { matrix }\right\}, \\
& \mathrm{p}_{1}=2\left\{\text { No. of columns of } 1^{\text {st }} \text { matrix } / \text { No. of rows of } 2^{\text {nd }} \text { matrix }\right\}, \\
& \mathrm{p}_{2}=3\left\{\text { No. of columns of } 2^{\text {nd }} \text { matrix } / \text { No. of rows of } 3^{\text {rd }} \text { matrix }\right\}, \\
& \mathrm{p}_{3}=1\left\{\text { No. of columns of } 3^{\text {rd }} \text { matrix } / \text { No. of rows of } 4^{\text {th }} \text { matrix }\right\}, \\
& \mathrm{p}_{4}=5\left\{\text { No. of columns of } 4^{\text {th }} \text { matrix }\right\}
\end{aligned}
$$

Calculation of Product of 2 matrices:

1. $\mathrm{M}[1,2]=\mathrm{M}_{1} \times \mathrm{M}_{2}$

$$
\begin{aligned}
& =(4 \times 2) \times(2 \times 3) \\
& =4 \times 2 \times 3=24
\end{aligned}
$$

2. $\mathrm{M}[2,3]=\mathrm{M}_{2} \times \mathrm{M}_{3}$

$$
\begin{aligned}
& =(2 \times 3) \times(3 \times 1) \\
& =2 \times 3 \times 1=6
\end{aligned}
$$

3. $M[3,4]=M_{3} \times M_{4}$

$$
\begin{aligned}
& =(3 \times 1) \times(1 \times 5) \\
& =3 \times 1 \times 5=15
\end{aligned}
$$

After filling the calculated values in the table

	1	2	3	4
1	0	24		
2		0	6	
3			0	15
4				0

Calculation of Product of $\mathbf{3}$ matrices:

To find $\mathrm{M}[1,3]$

There are two cases by which we can solve this multiplication:

$$
\left(M_{1} \times M_{2}\right) \times M_{3} \text { or } M_{1} \times\left(M_{2} \times M_{3}\right)
$$

After solving both cases we choose the case which require minimum number of operations

$$
\begin{aligned}
\mathrm{M}[1,3] & =\min \left\{\left(\mathrm{M}[1,2]+\mathrm{M}[3,3]+\mathrm{p}_{0} * \mathrm{p}_{2} * \mathrm{p}_{3}\right),\left(\mathrm{M}[1,1]+\mathrm{M}[2,3]+\mathrm{p}_{0} * \mathrm{p}_{1} * \mathrm{p}_{3}\right)\right\} \\
& =\min \{(24+0+4 * 3 * 1),(0+6+4 * 2 * 1)\} \\
& =\min \{36,14\} \\
& =14
\end{aligned}
$$

To find $M[2,4]$

There are two cases by which we can solve this multiplication:
$\left(M_{2} \times M_{3}\right) \times M_{4}$ or $M_{2} \times\left(M_{3} \times M_{4}\right)$
After solving both cases we choose the case which require minimum number of operations

$$
\begin{aligned}
\mathrm{M}[2,4] & =\min \left\{\left(\mathrm{M}[2,3]+\mathrm{M}[4,4]+\mathrm{p}_{1} * \mathrm{p}_{3} * \mathrm{p}_{4}\right),\left(\mathrm{M}[2,2]+\mathrm{M}[3,4]+\mathrm{p}_{1} * \mathrm{p}_{2} * \mathrm{p}_{4}\right)\right\} \\
& =\min \{(6+0+2 * 1 * 5),(0+15+2 * 3 * 5)\} \\
& =\min \{16,45\} \\
& =16
\end{aligned}
$$

Now the table becomes

	1	2	3	4
1	0	24	14	
2		0	6	16
3			0	15
4				0

Calculation of Product of 4 matrices:

To find $\mathrm{M}[1,4]$

There are three cases by which we can solve this multiplication:

$$
\begin{aligned}
& \left(M_{1} \times M_{2} \times M_{3}\right) \times M_{4} \\
& \left(M_{1} \times M_{2}\right) \times\left(M_{3} \times M_{4}\right) \\
& M_{1} \times\left(M_{2} \times M_{3} \times M_{4}\right)
\end{aligned}
$$

After solving all the cases we choose the case which require minimum number of operations

$$
\begin{aligned}
\mathrm{M}[1,4]= & \min \left\{\left(\mathrm{M}[1,3]+\mathrm{M}[4,4]+\mathrm{p}_{0} * \mathrm{p}_{3} * \mathrm{p}_{4}\right),\left(\mathrm{M}[1,2]+\mathrm{M}[3,4]+\mathrm{p}_{0} * \mathrm{p}_{2} * \mathrm{p}_{4}\right),\right. \\
& \left.\quad\left(\mathrm{M}[1,1]+\mathrm{M}[2,4]+\mathrm{p}_{0} * \mathrm{p}_{1} * \mathrm{p}_{4}\right)\right\} \\
= & \min \{(14+0+4 * 1 * 5),(24+15+4 * 3 * 5),(0+16+4 * 2 * 5)\} \\
= & \min \{34,99,56\} \\
= & 34
\end{aligned}
$$

Now the table becomes

	1	2	3	4
1	0	24	14	34
2		0	6	16
3			0	15
4				0

The efficient way to multiply the given set of matrices is
$\left(\mathrm{M}_{1} \times \mathrm{M}_{2} \times \mathrm{M}_{3}\right) \times \mathrm{M}_{4}$
$=\left(\mathrm{M}_{1} \times\left(\mathrm{M}_{2} \times \mathrm{M}_{3}\right)\right) \times \mathrm{M}_{4}$
which requires 34 operations

