MATRIX CHAIN MULTIPLICATION

- Matrix chain multiplication is an optimization problem that can be solved using dynamic programming.
- Given a sequence of matrices, the goal is to find the most efficient way to multiply these matrices. It will merely decide the sequence of the matrix multiplications involved.
- There are many options to multiply a chain of matrices because matrix multiplication is associative. For example, if we had four matrices A, B, C, and D, can be done as

 $(ABC)D = (AB)(CD) = A(BCD) \dots$

- Our aim is to find the order in which the matrices have to be parenthesized such that it requires minimum number of simple arithmetic operations to compute the product.
- For example if A is a 10 × 30 matrix, B is a 30 × 5 matrix, and C is a 5 × 60 matrix. Then, (AB)C = (10 * 30 * 5) + (10 * 5 * 60) = 1500 + 3000 = 4500 operations A(BC) = (30 * 5 * 60) + (10 * 30 * 60) = 9000 + 18000 = 27000 operations

the first one requires less number of operations

Example:

The matrices have size $4 \ge 2, 2 \ge 3, 3 \ge 1, 1 \ge 5$. Find the order in which the matrices have to be parenthesized such that it requires minimum number of simple arithmetic operations to compute the product.

Solution:

	1	2	3	4
1	0			
2		0		
3			0	
4				0

There are 4 matrices. So we have to take 4 X 4 table. Here

 $\begin{array}{l} p_0=4 \ \{ \text{No. of rows of } 1^{\text{st}} \text{ matrix} \}, \\ p_1=2 \ \{ \text{No. of columns of } 1^{\text{st}} \text{ matrix}/\text{No. of rows of } 2^{\text{nd}} \text{ matrix} \}, \\ p_2=3 \ \{ \text{No. of columns of } 2^{\text{nd}} \text{ matrix}/\text{No. of rows of } 3^{\text{rd}} \text{ matrix} \}, \\ p_3=1 \ \{ \text{No. of columns of } 3^{\text{rd}} \text{ matrix}/\text{No. of rows of } 4^{\text{th}} \text{ matrix} \}, \\ p_4=5 \ \{ \text{No. of columns of } 4^{\text{th}} \text{ matrix} \} \end{array}$

Calculation of Product of 2 matrices:

1.
$$M[1,2] = M_1 \times M_2$$

= (4 x 2) x (2 x 3)
= 4 x 2 x 3 = 24

2.
$$M[2,3] = M_2 \times M_3$$

= (2x3) x (3x1)
= 2 x 3 x 1 = 6

3.
$$M[3,4] = M_3 \times M_4$$

= (3 x 1) x (1 x 5)
= 3 x 1 x 5 = 15

After filling the calculated values in the table

	1	2	3	4
1	0	24		
2		0	6	
3			0	15
4				0

Calculation of Product of 3 matrices:

To find M[1,3]

There are two cases by which we can solve this multiplication:

($M_1 \ge M_2$) $\ge M_3$ or $M_1 \ge (M_2 \ge M_3)$

After solving both cases we choose the case which require minimum number of operations

$$M[1,3] = \min\{(M[1,2] + M[3,3] + p_0 * p_2 * p_3), (M[1,1] + M[2,3] + p_0 * p_1 * p_3)\}$$

= min{(24 + 0 + 4 * 3 * 1), (0 + 6 + 4 * 2 * 1)}
= min{36, 14}
= 14

To find M[2,4]

There are two cases by which we can solve this multiplication:

 $(M_2 \times M_3) \times M_4 \text{ or } M_2 \times (M_3 \times M_4)$

After solving both cases we choose the case which require minimum number of operations

$$M[2,4] = \min\{(M[2,3] + M[4,4] + p_1 * p_3 * p_4), (M[2,2] + M[3,4] + p_1 * p_2 * p_4)\}$$

$$= \min\{(6+0+2*1*5), (0+15+2*3*5)\}\$$

$$= \min\{16, 45\}$$

Now the table becomes

	1	2	3	4
1	0	24	14	
2		0	6	16
3			0	15
4				0

Calculation of Product of 4 matrices:

To find M[1,4]

There are three cases by which we can solve this multiplication:

 $(M_1 \ x \ M_2 \ x \ M_3) \ x \ M_4$ $(M_1 \ x \ M_2) \ x \ (M_3 \ x \ M_4)$ $M_1 \ x \ (M_2 \ x \ M_3 \ x \ M_4)$

After solving all the cases we choose the case which require minimum number of operations $M[1,4] = \min\{(M[1,3] + M[4,4] + p_0 * p_3 * p_4), (M[1,2] + M[3,4] + p_0 * p_2 * p_4),$

$$(M[1,1] + M[2,4] + p_0 * p_1 * p_4) \}$$

= min{(14 + 0 + 4 * 1 * 5), (24 + 15 + 4 * 3 * 5), (0 + 16 + 4 * 2 * 5)}
= min{34, 99, 56}
= 34

Now the table becomes

	1	2	3	4
1	0	24	14	34
2		0	6	16
3			0	15
4				0

The efficient way to multiply the given set of matrices is

 $(M_1 x M_2 x M_3) x M_4$ = $(M_1 x (M_2 x M_3)) x M_4$

which requires 34 operations